Educational Data Mining in Accounting: Market Segmentation Strategy for Financial Management of New Student Admissions

Authors

  • diky paramitha Universitas Terbuka, Indonesia
  • Novita Nugraheni Universitas Terbuka, Indonesia

DOI:

https://doi.org/10.36555/jasa.v9i1.2799

Keywords:

Educational Data Mining, Financial Management, Market Segmentation, Growth Ratio

Abstract

In higher education, effective financial management is a key factor in ensuring institutional sustainability, including at Universitas Terbuka. One of the main challenges in financial management is the ability to accurately analyze and predict new student enrollment. This study applies an Educational Data Mining (EDM) approach in accounting to develop market segmentation strategies that enhance financial management efficiency at Universitas Terbuka. The methods used include Growth Ratio and Naïve Bayes Classifier (NBC), utilizing data obtained from the national Senior High School database managed by the Indonesian Ministry of Education, Culture, Research, and Technology. The analysis results indicate that with the application of Growth Ratio calculations, the national SLTA graduate absorption rate is projected to increase by 1.2% annually. Based on this trend, the projected absorption rate of SLTA graduates into Universitas Terbuka is expected to grow to 7.2% in 2024, 8.4% in 2025, and 9.6% in 2026. These findings reflect a positive growth trend in new student enrollment, providing a strategic basis for Universitas Terbuka in making data-driven financial and resource management decisions. Thus, the implementation of Educational Data Mining techniques has the potential to be an innovative solution for supporting data-driven financial planning in higher education.

References

Altbach, P. G., Reisberg, L., & Rumbley, L. E. (2019). Trends in Global Higher Education: Tracking an Academic Revolution. UNESCO

Alvi, M. (2016). A manual for selecting sampling techniques in research

Baker, R. S. J. D., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3–17

Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Developing your objectives and choosing methods. Thesis projects, 54–70. https://doi.org/10.1007/978-1-84800-009-4_8

Bustami, B. (2013). Penerapan algoritma Naive Bayes untuk mengklasifikasi data nasabah asuransi. TECHSI: Jurnal Penelitian Teknik Informatika, 3(2), 127-146

CAHYO, M. (2024). ANALISIS PREDIKSI KELULUSAN MAHASISWA DENGAN METODE NAIVE BAYES CLASSIFIER (Studi Kasus: Program Studi Diploma III Teknologi Bank Darah di Poltekkes BSI Yogyakarta) (Doctoral dissertation, Universitas Teknologi Digital Indonesia)

Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991–16005

Garrison, R. H., Noreen, E. W., & Brewer, P. C. (2018). Managerial accounting. McGraw-Hill

Kotler, P. (2012). Kotler on marketing.

Larasati, D., Tanzil, N. D., Alfian, A., & Wardani, L. (2024). Business Intelligence Dashboard for Financial Performance Analysis of Public Service Agency Using Microsoft Power BI. JASa (Jurnal Akuntansi, Audit dan Sistem Informasi Akuntansi), 8(2), 491-499. https://doi.org/10.36555/jasa.v8i2.2649

Lu, H., Setiono, R., & Liu, H. (1996). Effective data mining using neural networks. IEEE transactions on knowledge and data engineering, 8(6), 957-961

Mirza, A. H. (2019). Application of naive bayes classifier algorithm in determining new student admission promotion strategies. Journal of Information Systems and Informatics, 1(1), 14-28

Patil, T. R., & Sherekar, M. S. (2013). Performance analysis of Naïve Bayes and J48 classification algorithm for data classification. International Journal of Computer Science and Applications, 6(2), 256-261

Peña-Ayala, A. (2014). Educational Data Mining: Applications and Trends. Springer

Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355

Santosa, B., Conway, T., & Trafalis, T. (2007). A hybrid knowledge based-clustering multi-class svm approach for genes expression analysis. Springer Optimization and Its Applications, 7, 231–274. https://doi.org/10.1007/978-0-387-69319-4_15

Saputri, L. N., Asroni, A., & Riyadi, S. (2021). Prediction of New Student Registration at Universitas Muhammadiyah Yogyakarta using the Naïve Bayes Classification

Senika, A. (2022). Implementasi metode Naïve Bayes dalam penilaian kinerja sales marketing pada PT. Pachira Distrinusa. Jurnal Media Informatika Budidarma, 6(1). https://doi.org/10.30865/mib.v6i1.3331

Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–40

Sivaram, N. (2010). Applicability of clustering and classification algorithms for recruitment data mining. Citeseer, 4(5), 975–8887

Suwayudhi, S., & Eka, I. (2022). Teknik klasifikasi dalam memprediksi penerimaan siswa baru menggunakan metode Naïve Bayes. https://doi.org/10.55123/jomlai.v1i3.963

Syahrullah, S., Ngemba, H. R., & Hendra, S. (2016). Pendaftaran Mahasiswa Baru Program Pendidikan Dasar Menggunakan Algoritma Nn Backpropagation Di Upbjj-Universitas Terbuka Provinsi Sulawesi Tengah. SEMNASTEKNOMEDIA ONLINE, 4(1), 4-9

Witten, D. M. (2011). Classification and clustering of sequencing data using a Poisson model. The Annals of Applied Statistics, 5(4), 2493–2518. https://doi.org/10.1214/11-AOAS493

Downloads

Published

2025-04-30

How to Cite

paramitha, diky, & Nugraheni, N. (2025). Educational Data Mining in Accounting: Market Segmentation Strategy for Financial Management of New Student Admissions. JASa (Jurnal Akuntansi, Audit Dan Sistem Informasi Akuntansi), 9(1), 117–125. https://doi.org/10.36555/jasa.v9i1.2799

Issue

Section

Articles

Citation Check