Optimizing Financial Distress Prediction Models in Digital Startups Using Generative Adversarial Networks (GANs) for Financial Data Augmentation

Authors

DOI:

https://doi.org/10.36555/jasa.v9i3.2939

Keywords:

Data augmentation, Financial distress, GANs, Machine learning, Startup

Abstract

Digital startups are highly vulnerable to financial distress due to limited historical financial data and imbalanced datasets between healthy and distressed firms. These challenges reduce the accuracy of existing prediction models, hindering early risk detection for investors and policymakers. This study aims to optimize financial distress prediction in Indonesian digital startups by applying Generative Adversarial Networks (GANs) for financial data augmentation. GANs are used to generate synthetic financial data that replicate real-world distributions, particularly for the minority class, to balance the dataset. A quantitative experimental design was employed, comparing baseline and GAN-augmented models trained on financial ratios such as ROA, ROE, and DER. The results show that the GAN-augmented model achieved higher accuracy (92%), precision (91%), recall (88%), and F1-score (90%) compared to the baseline model. These findings confirm that GAN-based augmentation enhances model robustness and prediction reliability under limited data conditions. The study contributes to financial distress prediction literature by integrating deep learning with synthetic data generation, offering a practical tool for early detection of financial instability in digital startups and supporting data-driven risk management in Indonesia’s digital economy.

References

Aderin, A., & Amede, O. (2022). Cash Flow Patterns and Financial Distress Prediction. Journal of Accounting and Management, 12(1), 41–52. https://www.researchgate.net/publication/373947148

D’Ercole, A., & Me, G. (2025). A Novel Approach to Company Bankruptcy Prediction Using Convolutional Neural Networks and Generative Adversarial Networks. Machine Learning and Knowledge Extraction, 7(3), 63. https://doi.org/10.3390/make7030063

Douzas, G., Bacao, F., & Last, F. (2019). Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Elsevier Information Sciences, 465, 1–20. https://doi.org/https://doi.org/10.1016/j.ins.2018.06.056

Gunanto, A. (2023). Mitigating Financial Distress: Analysis of Financial Indicators for Startup Companies in Indonesia. CECCAR Business Review, 4(10), 49–59. https://doi.org/10.37945/cbr.2023.10.06

Judijanto, L., Sihotang, J., & Simbolon, A. P. H. (2024). Early Warning Systems for Financial Distress: A Machine Learning Approach to Corporate Risk Mitigation. International Journal of Basic and Applied Science, 13(1), 14–27. https://doi.org/10.35335/ijobas.v13i1.470

Kalbuana, N., Taqi, M., Uzliawati, L., & Ramdhani, D. (2022). The Effect of Profitability, Board Size, Woman on Boards, and Political Connection on Financial Distress Conditions. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2142997

Kristanti, F. T., Febrianta, M. Y., Salim, D. F., Riyadh, H. A., & Beshr, B. A. H. (2024). Predicting Financial Distress in Indonesian Companies using Machine Learning. Engineering, Technology and Applied Science Research, 14(6), 17644–17649. https://doi.org/10.48084/etasr.8520

Kuizinienė, D., Krilavičius, T., Damaševičius, R., & Maskeliūnas, R. (2022). Systematic Review of Financial Distress Identification using Artificial Intelligence Methods. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2138124

Kuntalp, M., & Düzyel, O. (2024). A new method for GAN-based data augmentation for classes with distinct clusters. Elsevier Expert Systems with Applications, 235. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121199

Lau, E. A. (2021). Financial Distress dan Faktor-Faktor Prediksinya. Jurnal Exchall, 3(2), 1–17.

Li, J., & Wang, C. (2023). A Deep Learning Approach of Financial Distress Recognition Combining Text. Electronic Research Archive, 31(8), 4683–4707. https://doi.org/10.3934/ERA.2023240

Li, Y., Stasinakis, C., & Yeo, W. M. (2022). A Hybrid XGBoost-MLP Model for Credit Risk Assessment on Digital Supply Chain Finance. Forecasting, 4(1), 184–207. https://doi.org/http://dx.doi.org/10.3390/forecast4010011

Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Elsevier Informatics in Medicine Unlocked, 27(1), 1–7. https://doi.org/https://doi.org/10.1016/j.imu.2021.100779

Nayak, S. M., & Rout, M. (2024). Bankruptcy Prediction Using a GAN-based Data Augmentation Hybrid Model. In Generative AI: Current Trends and Applications (pp. 407–426). https://doi.org/http://dx.doi.org/10.1007/978-981-97-8460-8_19

Nurfauziyyah, D., & Muslim, A. I. (2024). Literature review tentang financial distress yang terbit di jurnal Sinta. Jurnal Akuntansi Dan Keuangan, 9(2), 225–240.

Prasetyo, Y. T., Handayani, T. A., & Sari, R. N. (2023). Evaluating Financial Health of Indonesian Tech Startups Using Machine Learning Algorithms. Journal of Business and Technology, 4(1), 45–58.

Ramadhanti, D. V., Santoso, R., & Widiharih, T. (2022). Perbandingan SMOTE dan ADASYN Pada Data Imbalance Untuk Klasifikasi Rumah Tangga Miskin Kabupaten Temanggung Dengan Algoritma K-Nearest Neighbor. Jurnal Gaussian, 11(4), 499–505.

Silaban, B. T., Setiana, S., & Tanujaya, T. A. C. (2024). Financial risk management strategies in startup companies: Accounting perspectives. Ekonomi Dan Bisnis, 11(1), 45–60.

Silva, A., Ferreira, P., & Pereira, R. (2021). The role of GANs in financial distress prediction. International Journal of Financial Studies, 9(4), 1–13.

Wayan, N., & Ayuni, D. (2025). Artificial Neural Networks : A Deep Learning Approach in Financial Distress Prediction (Issue January). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-587-4

Zhang, J., Wang, Q., & Liu, Y. (2022). Enhancing financial distress forecasting using Generative Adversarial Networks. Journal of Computational Finance, 14(3), 50–63.

Zhang, X., Yu, L., Yin, H., & Lai, K. K. (2022). Integrating data augmentation and hybrid feature selection for small sample credit risk assessment with high dimensionality. Computers & Operations Research, 146, 105937. https://doi.org/https://doi.org/10.1016/j.cor.2022.105937

Downloads

Published

2025-12-29

How to Cite

Antasari, N. D., & Kurniawan, E. (2025). Optimizing Financial Distress Prediction Models in Digital Startups Using Generative Adversarial Networks (GANs) for Financial Data Augmentation. JASa (Jurnal Akuntansi, Audit Dan Sistem Informasi Akuntansi), 9(3), 598–607. https://doi.org/10.36555/jasa.v9i3.2939

Issue

Section

Articles

Citation Check

Similar Articles

<< < 25 26 27 28 29 30 31 32 33 34 > >> 

You may also start an advanced similarity search for this article.