Optimizing Financial Distress Prediction Models in Digital Startups Using Generative Adversarial Networks (GANs) for Financial Data Augmentation
DOI:
https://doi.org/10.36555/jasa.v9i3.2939Keywords:
Data augmentation, Financial distress, GANs, Machine learning, StartupAbstract
Digital startups are highly vulnerable to financial distress due to limited historical financial data and imbalanced datasets between healthy and distressed firms. These challenges reduce the accuracy of existing prediction models, hindering early risk detection for investors and policymakers. This study aims to optimize financial distress prediction in Indonesian digital startups by applying Generative Adversarial Networks (GANs) for financial data augmentation. GANs are used to generate synthetic financial data that replicate real-world distributions, particularly for the minority class, to balance the dataset. A quantitative experimental design was employed, comparing baseline and GAN-augmented models trained on financial ratios such as ROA, ROE, and DER. The results show that the GAN-augmented model achieved higher accuracy (92%), precision (91%), recall (88%), and F1-score (90%) compared to the baseline model. These findings confirm that GAN-based augmentation enhances model robustness and prediction reliability under limited data conditions. The study contributes to financial distress prediction literature by integrating deep learning with synthetic data generation, offering a practical tool for early detection of financial instability in digital startups and supporting data-driven risk management in Indonesia’s digital economy.
References
Aderin, A., & Amede, O. (2022). Cash Flow Patterns and Financial Distress Prediction. Journal of Accounting and Management, 12(1), 41–52. https://www.researchgate.net/publication/373947148
D’Ercole, A., & Me, G. (2025). A Novel Approach to Company Bankruptcy Prediction Using Convolutional Neural Networks and Generative Adversarial Networks. Machine Learning and Knowledge Extraction, 7(3), 63. https://doi.org/10.3390/make7030063
Douzas, G., Bacao, F., & Last, F. (2019). Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Elsevier Information Sciences, 465, 1–20. https://doi.org/https://doi.org/10.1016/j.ins.2018.06.056
Gunanto, A. (2023). Mitigating Financial Distress: Analysis of Financial Indicators for Startup Companies in Indonesia. CECCAR Business Review, 4(10), 49–59. https://doi.org/10.37945/cbr.2023.10.06
Judijanto, L., Sihotang, J., & Simbolon, A. P. H. (2024). Early Warning Systems for Financial Distress: A Machine Learning Approach to Corporate Risk Mitigation. International Journal of Basic and Applied Science, 13(1), 14–27. https://doi.org/10.35335/ijobas.v13i1.470
Kalbuana, N., Taqi, M., Uzliawati, L., & Ramdhani, D. (2022). The Effect of Profitability, Board Size, Woman on Boards, and Political Connection on Financial Distress Conditions. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2142997
Kristanti, F. T., Febrianta, M. Y., Salim, D. F., Riyadh, H. A., & Beshr, B. A. H. (2024). Predicting Financial Distress in Indonesian Companies using Machine Learning. Engineering, Technology and Applied Science Research, 14(6), 17644–17649. https://doi.org/10.48084/etasr.8520
Kuizinienė, D., Krilavičius, T., Damaševičius, R., & Maskeliūnas, R. (2022). Systematic Review of Financial Distress Identification using Artificial Intelligence Methods. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2138124
Kuntalp, M., & Düzyel, O. (2024). A new method for GAN-based data augmentation for classes with distinct clusters. Elsevier Expert Systems with Applications, 235. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121199
Lau, E. A. (2021). Financial Distress dan Faktor-Faktor Prediksinya. Jurnal Exchall, 3(2), 1–17.
Li, J., & Wang, C. (2023). A Deep Learning Approach of Financial Distress Recognition Combining Text. Electronic Research Archive, 31(8), 4683–4707. https://doi.org/10.3934/ERA.2023240
Li, Y., Stasinakis, C., & Yeo, W. M. (2022). A Hybrid XGBoost-MLP Model for Credit Risk Assessment on Digital Supply Chain Finance. Forecasting, 4(1), 184–207. https://doi.org/http://dx.doi.org/10.3390/forecast4010011
Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Elsevier Informatics in Medicine Unlocked, 27(1), 1–7. https://doi.org/https://doi.org/10.1016/j.imu.2021.100779
Nayak, S. M., & Rout, M. (2024). Bankruptcy Prediction Using a GAN-based Data Augmentation Hybrid Model. In Generative AI: Current Trends and Applications (pp. 407–426). https://doi.org/http://dx.doi.org/10.1007/978-981-97-8460-8_19
Nurfauziyyah, D., & Muslim, A. I. (2024). Literature review tentang financial distress yang terbit di jurnal Sinta. Jurnal Akuntansi Dan Keuangan, 9(2), 225–240.
Prasetyo, Y. T., Handayani, T. A., & Sari, R. N. (2023). Evaluating Financial Health of Indonesian Tech Startups Using Machine Learning Algorithms. Journal of Business and Technology, 4(1), 45–58.
Ramadhanti, D. V., Santoso, R., & Widiharih, T. (2022). Perbandingan SMOTE dan ADASYN Pada Data Imbalance Untuk Klasifikasi Rumah Tangga Miskin Kabupaten Temanggung Dengan Algoritma K-Nearest Neighbor. Jurnal Gaussian, 11(4), 499–505.
Silaban, B. T., Setiana, S., & Tanujaya, T. A. C. (2024). Financial risk management strategies in startup companies: Accounting perspectives. Ekonomi Dan Bisnis, 11(1), 45–60.
Silva, A., Ferreira, P., & Pereira, R. (2021). The role of GANs in financial distress prediction. International Journal of Financial Studies, 9(4), 1–13.
Wayan, N., & Ayuni, D. (2025). Artificial Neural Networks : A Deep Learning Approach in Financial Distress Prediction (Issue January). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-587-4
Zhang, J., Wang, Q., & Liu, Y. (2022). Enhancing financial distress forecasting using Generative Adversarial Networks. Journal of Computational Finance, 14(3), 50–63.
Zhang, X., Yu, L., Yin, H., & Lai, K. K. (2022). Integrating data augmentation and hybrid feature selection for small sample credit risk assessment with high dimensionality. Computers & Operations Research, 146, 105937. https://doi.org/https://doi.org/10.1016/j.cor.2022.105937
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 JASa (Jurnal Akuntansi, Audit dan Sistem Informasi Akuntansi)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




